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1  |  POINTS OF AGREEMENT

There is broad consensus that careful attention to avoiding contam-
inants and other spurious sequences that represent “false positives” 
is critical in DNA metabarcoding studies. Although imperfect, there 
have been many encouraging improvements to sampling strategies, 
sequencing technologies and computational methods that can help 
prevent and mitigate these errors. Readers may refer to numerous 
prior reviews for more detailed consideration of these developments 

and specific guidance about how to effectively design and analyse 
a dietary DNA metabarcoding study (Alberdi et al.,  2018; Ando 
et al., 2018; Carlsen et al., 2012; Cirtwill & Hambäck, 2021; Creer 
et al., 2016; Deagle et al., 2010, 2019; Mata et al., 2019; McInnes 
et al., 2017; Zinger et al., 2019).

We found at least three points of agreement in the critique by 
Tercel & Cuff (2022) that we were disappointed to see framed as 
points of contention. Our original paper contended: (i) that false-
positive sequences are indeed problematic for interpretations of 
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Abstract
It is clearly beneficial to eliminate low-abundance sequences that arise in error during 
dietary DNA metabarcoding studies, but to purge all low-abundance sequences is to 
risk eliminating real sequences and complicating ecological analyses. Our prior litera-
ture review noted that DNA sequence relative read abundance (RRA) thresholds can 
help ameliorate false-positive taxon occurrences, but that historical emphasis on this 
utility has fostered uncertainty about the associated risk of inflating the false-negative 
rate (Littleford-Colquhoun et al., 2022). To address this, we combined a simulation 
study and an empirical data set to both illustrate the issue and provide blueprints for 
simulation studies and sensitivity analyses that can help investigators avoid overcor-
recting and thereby bolster confidence in ecological inferences. Awareness of both 
the costs and the benefits of abundance-filtering is needed because accurately char-
acterizing dietary distributions can be critically important for understanding animal 
diets, nutrition and trophic networks. Highlighting the need to raise awareness, a cri-
tique of our paper emphasized the misleading notion that “false positive interactions 
between species can present fundamentally incorrect network structures in network 
ecology, whereas false negatives will provide a correct but incomplete version of the 
network” (Tercel & Cuff, 2022). Asserting that the reliability of results will be eroded 
by false positives but resilient to the omission of true positives is risky and runs coun-
ter to evidence. Unfortunately, abundance-filtering methods can introduce false neg-
atives at higher rates than they eliminate false positives and thereby undermine the 
analysis of otherwise reliable sequencing data. Overcorrecting can qualitatively alter 
and ultimately undermine ecological interpretations.
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dietary DNA metabarcoding data; (ii) that practitioners should in-
deed strive to eliminate false positives in order to ensure valid 
interpretations; and (iii) that there may indeed be some research 
utility in employing RRA thresholds (for simplicity, “RRA thresh-
olds” ≈ “minimum copy number thresholds” [MCNTs]). Point iii is 
particularly important to establish because Tercel and Cuff mis-
quoted our paper, claiming that we discouraged the use of RRA 
thresholds to exclude low-abundance sequences and suggest-
ing that we would rather rely on junky data that have been left 
“unchecked” due to “the abandonment” of RRA thresholds “in all 
studies” (Tercel & Cuff, 2022). But this is not so. We discussed at 
length how RRA thresholds may be useful in “at least” two com-
mon scenarios (Littleford-Colquhoun et al.,  2022): (i) to exclude 
putatively false-positive sequences that occur at low relative 
abundance (perhaps as a bioinformatic convenience); and (ii) to 
focus analyses on relatively abundant taxa (perhaps because these 
taxa are of particular interest). These two scenarios are not mutu-
ally exclusive, and in practice they are not always differentiated, 
but we identified a specific need to focus on evidence concerning 
the usefulness of RRA thresholds in excluding false positives (a 
desired effect) vs. the risk of introducing false negatives (an insid-
ious side effect).

2  |  THE E VIDENCE CONCERNING 
MINIMUM RE AD THRESHOLDS

It is important to establish that there is evidence for both pros and 
cons when using RRA thresholds to mitigate the impacts of false-
positive sequences in DNA metabarcoding studies:

1.	 The need to filter spurious DNA sequences that arise as con-
taminants and tag-jumps may be inevitable, but the extent of 
these sequences can vary based on the number of samples 
and study system (Dickie et al.,  2018; Taberlet et al.,  2018; 
Zinger et al.,  2019), the library preparation method (Carøe & 
Bohmann, 2020; Clarke et al., 2014; Schnell et al., 2015) and the 
sequencing platform (Schirmer et al., 2015). Spurious sequences 
that become rampant can undermine the development of any 
appropriate bioinformatic-filtering strategy, but computational 
methods can otherwise help mitigate occurrences (Cirtwill & 
Hambäck,  2021).

2.	 Using RRA thresholds to exclude false-positive sequences 
works on the assumption that spurious sequences appear at 
lower relative abundances than a chosen threshold. It is widely 
acknowledged that it can be difficult to determine an appropri-
ate threshold or verify its efficacy in practice (Ando et al., 2020; 
Deagle et al., 2019; Kelly et al., 2019).

3.	 Spurious sequences can occur at high relative abundances, and 
thus cannot always be eliminated effectively using this method 
(Alberdi et al., 2018; Ando et al., 2018, 2020).

4.	 Some low-abundance sequences may be real, and they may be im-
portant components of animal diets and trophic networks; there 

is thus significant interest in striving to identify them (Littleford-
Colquhoun et al., 2022; Pringle & Hutchinson, 2020).

5.	 All polymerase chain reaction (PCR)-based methods are prone to 
amplification bias, error and omission, but converting sequence 
counts to presence/absence data does not correct these issues: 
in many cases, converting sequence counts to presence/absence 
data can amplify the impacts of these errors (Deagle et al., 2019).

6.	 Using RRA thresholds to exclude sequences based exclusively 
on their relative abundance will modify dietary diversity distri-
butions and thus the method has potential to distort ecological 
signals in the data (Littleford-Colquhoun et al., 2022).

Based on the evidence, we contended that the rarity of a se-
quence alone is insufficient to conclude that it is an error or other-
wise unimportant trophic link (Littleford-Colquhoun et al., 2022). In 
other words, if some low-abundance sequences are true, then not 
all low-abundance sequences are false. This logical contention is not 
at odds with the evidence that many low-abundance sequences are 
indeed errors, but rather acknowledges that positively identifying a 
sequence as an error may require additional lines of evidence that 
can be obtained, for example, from algorithms designed to detect 
chimeras, PCR errors or tag jumps (Ando et al., 2020).

3  |  ACCOUNTING FOR ERRORS ARISING 
FROM FAL SE- POSITIVES AND FAL SE-
NEGATIVES

The central assertion by Tercel and Cuff is that the credibility of 
DNA metabarcoding studies will be eroded by including false posi-
tives but robust to the introduction of false negatives. Presumably, 
therefore, the benefits of abundance-filtering strategies that are 
commonly used should tend to outweigh the costs incurred by in-
troducing false negatives when applied to representative data sets. 
Here, we present a simulation study that accounts for both false 
positives and false negatives in such a scenario. The results reveal 
why the assertions by Tercel and Cuff may often be wrong and help 
provide better intuition about the costs and benefits of abundance-
filtering methods.

We will begin with a synopsis of the computer simulations pre-
sented in our original study (Littleford-Colquhoun et al.,  2022). In 
those simulations, we produced in silico DNA metabarcoding data 
to enable comparisons of the effects that abundance-filtering would 
have on the dietary profiles of a hypothetical generalist and special-
ist whose true diets differed only in the probability with which they 
selected available foods (Figure 1a,b). Here, we randomly replaced 
some of the true sequence reads from those simulated diet profiles 
with a shared set of contaminants that represented 10 equally abun-
dant taxa (i.e., false positives; Figure  1a,b). We compared scenar-
ios where this contamination occurred at a relatively low level (10 
contaminants each at 0.1% relative abundance; each representing 
25 out of 25,000 reads) vs. a relatively high level (10 contaminants 
each at 1% relative abundance; each representing 250 out of 25,000 
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    |  3LITTLEFORD-­COLQUHOUN et al.

F I G U R E  1  Simulated DNA metabarcoding data revealed how abundance-filtering methods eliminate both true and false sequence 
reads. Analyses began with simulated dietary DNA metabarcoding data for both a (a) specialist and (b) generalist consumer. A subset of 
true sequence reads was replaced either by relatively low levels of contamination (10 contaminants at 0.1% relative abundance each) or 
by relatively high levels of contamination (10 contaminants at 1% relative abundance each). The grey segments in the stacked barplots 
represent true-positive taxa and red segments represent contaminating taxa based on one of the 99 random iterations of the contamination 
procedure. In both data sets (c, d), the percentage false positives was exaggerated by using low-to-moderate percentage RRA thresholds. 
With high levels of contamination (brown lines), false positives comprised up to (c) 71% of taxa within the specialist's dietary profile and (d) 
29% of taxa within a generalist's dietary profile. Further, high rates of false negatives were produced by low-to-moderate RRA thresholds 
(0.1%–1%), which led to losses of (e) 69%–79% of true taxa for the specialist and (f) 0%–76% of true taxa for the generalist. Because we 
conducted 99 random iterations of the low- and high-level contamination procedures, each plot contains a set of 99 nearly overlapping teal 
and brown lines (c–f)
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4  |    LITTLEFORD-­COLQUHOUN et al.

reads). We repeated this random contamination procedure 99 times, 
supplanting a different set of true sequences in each iteration. If we 
attempted to ameliorate the impacts of these contaminants on our 
dietary data by removing low-abundance sequences using 0%–5% 
RRA thresholds, we would intuitively eliminate the contaminants 
when we select thresholds that exceeded their abundance (i.e., 0.1% 
or 1%; Figure 1c,d). Perhaps counterintuitively, however, we would 
find that  “mild” RRA thresholds increased the percentage false-
positive taxa in our results—even though we would not have added 

any new false-positive sequences—because we would have elimi-
nated more true sequences than false ones (Figure 1c–f). This result 
would have been especially pronounced for the specialist because of 
its highly skewed dietary diversity distribution.

Having shown that the percentage of false positives and per-
centage of false negatives are both sensitive to differences in the un-
derlying (true) dietary distributions, we will now consider how their 
different sensitivities can influence measures of dietary overlap 
in a trophic network. Tercel and Cuff asserted that when spurious 

F I G U R E  2  When compared to the true simulated dietary distributions, abundance-filtering can introduce greater levels of error than it 
eliminates. For simulated (a, b) specialists and (c, d) generalists, abundance-filtering using RRA thresholds between 0% and 5% introduced 
error regardless of the simulated level of contamination. We calculated error as Bray–Curtis dissimilarity between each true dietary profile 
and the dietary profile that resulted after contamination and/or abundance-filtering. We found (e, f) abundance-filtering had the potential to 
either increase or decrease the inferred level of similarity between the specialist and generalist compared to the true value. The true level 
of dietary overlap is indicated by the zero line, such that positive and negative values indicate scenarios where the inferred diets were more 
or less similar than expected, respectively. Greater levels of error were evident in analyses of presence/absence data (left) compared to 
RRA data (right) for the specialist diet profile (top), the generalist diet profile (middle), and the overlap between the specialist and generalist 
(bottom)
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    |  5LITTLEFORD-­COLQUHOUN et al.

sequences are shared by a generalist and specialist, the inferred level 
of dietary overlap would increase to misleading levels but that this 
could be corrected by abundance-filtering. Tercel and Cuff did not 
base this assertion on evidence, but rather drew hypothetical ordi-
nations and speculated (see their Figure 2). Contrary to their con-
jecture, we found that shared contaminants reaching levels of up 
to 10% cumulative RRA had almost imperceptible impacts on the 
resulting measures of dietary composition and overlap (Figure 2a–d). 
By contrast, the overall percentage of error in our inferred dietary 
compositions increased drastically after abundance-filtering—
especially for the specialist and especially when converting the 
sequence reads to presence/absence data (Figure 2a,b). Abundance-
filtering predominantly (but not exclusively) increased the inferred 
levels of dietary overlap (Figure  2e,f), again contradicting the as-
sertions made by Tercel and Cuff. Especially when using presence/
absence data, abundance-filtering had the potential to alter ecolog-
ical interpretations: whereas the true Bray–Curtis dissimilarity be-
tween the diets of our simulated specialist and generalist was 0.67, 
abundance-filtering produced results that ranged from 0.08 to 0.91 
and thus spanned nearly the entire range of potential values from 0 
to 1 (Figure 2e).

4  |  NAVIGATING COMPLE XIT Y

With the goal of producing accurate understanding in ecology, 
evidence-based approaches can help us navigate the complexity of 
dietary DNA data. In addition to methodological considerations in 
vitro, evidence-based approaches in silico may include the use of 
simulation studies and sensitivity analyses such as the ones that we 
presented here and in Littleford-Colquhoun et al.  (2022). Clearly, 
there are both pros and cons to using RRA thresholds: they may be 
useful for focusing analyses on relatively abundant taxa that are of 
particular interest and/or that ameliorate concerns about the im-
pacts of low-abundance errors, but they may also reshape dietary 
diversity distributions in ways that can be consequential for analy-
ses that are sensitive to these distributions (e.g., Hill numbers, dis-
similarity metrics). The evidence shows that reducing or eliminating 
our reliance on RRA thresholds may be possible, and investigators 
may gain confidence in doing so by focusing on robust experimental 
strategies (e.g., using libraries that enable detection of tag jumps; 
sequencing PCR replicates, extraction blanks and controls). There 
will also be benefit in continuing to investigate how abundance-
filtering strategies may impact a wider variety of research scenarios, 
sources of error and bioinformatic pipelines than we have presented 
here. Important parameters to vary in future studies could include: 
(i) contamination levels (e.g., the number of contaminants, the levels 
of contamination, the constancy of contaminants across samples); 
(ii) experimental designs (e.g., sample size, read depth, amplifica-
tion biases and any variation in these measures); or (iii) ecological 
scenarios (e.g., generalists and specialists with various degrees of 
true dietary overlap). There are undoubtedly other combinations of 
parameters to consider and controlled experiments to be completed. 

Fortunately, however, we do not need to tailor our simulation stud-
ies to every empirical scenario in order to test critical assumptions, 
foster intuition and support evidence-based research outcomes.
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